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Hitters Complete Regression Analysis

Exploratory Analysis

“Hitters” is a dataset of Major League Baseball statistics about different players from the 1986

and 1987 seasons. This dataset contains observations for 322 players and has 20 variables, and

our response variable is Salary, a continuous variable that represents each player’s 1987 annual
salary on opening day in thousands of dollars.

The continuous variables AtBat, Hits, HmRun, Runs, RBI, Walks, PutOuts, Assists, and Errors
measure the number of times at bat, hits, home runs, runs, runs batted, walks, putouts, assists,
and errors, respectively, of each player in 1986. These variables, save Errors, measure some
aspect of each player’s performance.

The continuous variables CAtBat, CHits, CHmRun, CRuns, CRBI, and CWalks measure the
number of times at bat, hits, home runs, runs, runs batted, and walks, respectively, of each player
during their careers.

The continuous variable Years is the amount of years each player has been playing in the Major
League.

The categorical variables League, Division, and NewLeague hold information about a players
league at the end of 1986, division at the end of 1986, and league at the beginning of 1987,
respectively.

Data Cleaning
The categorical variables “League”, “Division”, and “NewLeague” are factors by default.

To remove any missing data, the dataset was copied without entries with missing data into the
dataset ds, with
ds = na.omit (Hitters)

As a result, the data now has 263 observations as 59 observations had missing data. This adjusted
data set, ds, is what we will use for the rest of our analysis.

Numeric and Visual Analysis

To check the correlations of each continuous variable relative to Salary,
cor(ds[,c(-14,-15,-20)1)[17,]



14, 15, 20 are the indexes of the categorical variables, and 17 is the index of “Salary” after
indexes have been adjusted for removing indexes 14 and 15. The variables most correlated to
Salary are CRBI(0.5670), CRuns(0.5647), CHits(0.5489), CAtBat(0.5261), CHmRun(0.5249).

However, the variables that we will be analyzing, determined to be the most significant
predictors of Salary in the Regression Analysis section, are AtBat, Hits, Walks, CRuns, CWalks,
and PutOuts.

Using the “summary()” function, AzBat has a similar mean(403.6) and median(413.0), and the
distribution is normal. Hits also has a similar mean(107.8) and median(103.0) with a normal
distribution.
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CRuns, CWalks, Walks, and PutOuts have distributions that are skewed right. Their means are
noticeably larger than their medians and are 361.2 to 250.0(CRuns), 260.3 to 174.09(CWalks),
41.11 to 37.00(Walks), and 290.7 to 224.0(PutOuts), respectively.

Similar to most of our significant variables, our response variable, Salary, also has a distribution
that is skewed right, and a noticeably higher mean(535.9) than median(425.0).
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These significant variables are all positively correlated to Salary, especially in the lower ranges.
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These variables measure different aspects of performance, which explain the positive
relationship these variables have with Salary, as better performance is often associated with

better compensation.

When examining these variables against each other, most combinations have some positive
correlation. AtBat and Hits and CRuns and CWalks have a very strong positive correlation.
Intuitively, more chances at bat(4¢Baf) means more chances for a player to gain a hit(Hits).
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PutOuts, CRuns, and CWalks tend to cluster to the left and the lower ranges. CRuns and CWalks
especially lack correlation with other variables, and this is likely because these variables
represent statistics from players’ entire careers and the other statistics are from the 1986 season,
meaning that these variables have completely different time frames. In addition, there is a strong
correlation between the CRuns and CWalks, which are career variables.

Regression Analysis

The predictors included in my linear regression model are A¢Bat, Hits, Walks, CRuns, CWalks,
and PutOuts. These predictors were chosen by creating a linear model and using the
“summary()” function on that model to examine which variables had acceptable p-values, which
indicate if a variable was a significant predictor of the response variable.
lr=Im(Salary~AtBat+Hits+HmRun+Runs+RBI+Walks+CAtBat+CHits+CHmRun
+CRuns+CRBI+CWalks+PutOuts+Assists+Errors+Years, data=ds)

summary (1lr)

The new linear model includes those six most significant predictor variables,
1rl = Im(Salary~AtBat+Hits+Walks+CRuns+CWalks+PutOuts, data=ds)

The first assumption for regression that we look at is linearity. By examining the Residuals vs
Fitted plot, we can tell that the red line is not linear.
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Violations of linearity are fixed by altering the predictor variables. The red line has a parabolic
shape, indicating that squared terms may be useful. Squaring the variables AtBat, Walks, CRuns,
and PutOuts creates a more linear red line on the Residuals vs Fitted plot.
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This results in the following linear model,
lrl=Im(I((Salary))~I (AtBat”2)+(Hits)+I (Walks”2)+I (CRuns”"2)+ (CWal
ks)+I (PutOuts”2), data=ds)

Normality can be examined in the Q-Q Residuals plot. Most of the data points are on the y=x
line, indicating normality.
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However, there are many points on either end of the plot that are not on this line. We can fix this
by changing the response variable. By taking the square root of the response variable, more of
the points are closer to the y=x line.



Q-Q Residuals
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This results in the linear model,

lrl=1m (I (sgrt(Salary))~I (AtBat”2)+ (Hits)+I (Walks”"2)+I (CRuns”2) + (
CWalks)+I (PutOuts”®2), data=ds)

Outliers are found in the Residuals vs Leverage plot. High standardized residuals and
leverages, more specifically residuals and leverages past the Cook’s distance function, are
indication of an outlier.

Residuals vs Leverage
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No points are on or past the Cook’s distance function, but “Mike Schmidt” and “Pete Rose”
exhibit an extremely high standardized residual and leverage, respectively.



Residuals vs Leverage
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Although there are points with high leverages and standardized residuals, they are of a lesser
magnitude than the two previously removed outliers. I removed these points by creating a vector
of the outlier names and remove these in the data I use for my linear model,

c('-Mike Schmidt', '-Pete Rose')
lrl=1m (I (sqgrt(Salary))~I (AtBat”2)+ (Hits)+I (Walks”"2)+I (CRuns”"2) + (
CWalks”™2)+I (PutOuts”2), data=ds|[! (row.names (ds) %in%
outliers),])

For homoscedasticity, we examine the Scale-Location plot. There is no discernable pattern in
the spread of points, meaning that homoscedasticity is not violated.
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Thus, my final model is

lrl=Im(I (sgrt(Salary))~I (AtBat”2)+ (Hits)+I (Walks”"2)+I (CRuns”"2) + (
CWalks”™2)+I (PutOuts”2), data=ds|[! (row.names (ds) %in%
outliers), ])

The final coefficients result in the equation,

Salary = 5.741 - 1.814e-5(AtBat)* + 1.248e-1(Hits) + 4.057e-5(Walks)? -
1.099¢-6(CRuns)* + 1.908e-2(CWalks) + 3.300¢e-6(PutOuts)?

The adjusted R-squared for this model is 0.5058, and the multiple R-squared is 0.5172. This
means the model explains around half of the variability in Salary and this model is a good fit for
the data.

Conclusion

Creating a model for Salary variable in the “Hitters” dataset required creating a linear model
using significant predictor variables and altering this linear model to fix any violated model
assumptions and create a final model.

To find the significant variables, I created a linear model of all the numeric variables and used
the “summary()” function on the linear model and chose the variables with low enough p-values.
Interestingly, these variables did not align with the variables that had the most correlation to
Salary.

In the linear model of these significant variables, linearity and normality were violated and were
fixed with alterations to the function used in the linear model. In addition, there were outliers that
were removed from the dataset.

The resulting function of my final model,
I(sqrt(Salary))~I(AtBat"2)+(Hits)+I(Walks"2)+I(CRuns"2)+(CWalks"2)+I(PutOuts”"2),

had an adjusted R-squared value of 0.5058, which means that my final model is generally a good
fit and can account for around half of the data.

However, although this model is a good fit, there is a lot of room for improvement in the
adjusted R-squared value. Beyond errors in analysis that may have caused this, this can show
that data sets are predictions and may not always accurately represent all the factors at play. For
example, the popularity of a player could be a potential factor in their pay, which is something
that is not in this dataset.



